Matematyka Zbiór zadań maturalnych. Lata 2002–2023. Poziom rozszerzony. 545 zadań CKE z rozwiązaniami. Autorzy. Opracował: Ryszard Pagacz Zadanie maturalne nr 8, matura 2021 (poziom rozszerzony) Treść zadania: Dany jest trójkąt równoboczny A B C. Na bokach A B i A C wybrano punkty — odpowiednio — D i E takie, że | B D | = | A E = 1 3 | A B |. Odcinki C D i B E przecinają się w punkcie P (zobacz rysunek). Wykaż, że pole trójkąta D B P jest 21 razy mniejsze od pola Zadania domowe z poszczególnych lekcji - rok szkolny 2021/2022 Zadania z lekcji z matematyki dla liceum czteroletniego - poziom rozszerzony • Klasa 1 - PR - liceum czteroletnie Dowody matematyczne. Zbiór zadań na dowodzenie dla maturzystów i nie tylko. Zakres podstawowy i rozszerzony, książka wydana w 2018 roku. Zbiór zadań zawiera 328 dowodów w pełni rozwiązanych krok po kroku, w tym: – 131 zadań z zakresu podstawowego, – 197 zadań z zakresu rozszerzonego. Matura z Matematyki Egzamin ósmoklasisty forum zadankowe liczby i wyrażenia algebraiczne logika, zbiory, przedziały wartość bezwzględna funkcja i jej własności funkcja liniowa funkcja kwadratowa wielomiany funkcja wymierna funkcja wykładnicza logarytmy ciągi liczbowe granica ciągu i funkcji pochodna funkcji trygonometria geometria na płaszczyźni manfaat salep pi kang shuang untuk miss v. Matematyka Aksjomat Toruń Oszczędzasz 12,95 zł (41% Rabatu) Wysyłka: 1-2 dni robocze+ czas dostawy Opis Niniejszy opracowanie wychodzi naprzeciw oczekiwaniom uczniów i nauczycieli, którzy chcą się przygotować do poprawnego dowodzenia zadań maturalnych, które jakże często występują na egzaminie podstawowym i składa się z trzech części:Ponad 300 przykładowych zadań poświęconych dowodzenie, pogrupowanych w 11 działach zgodnie z podstawą programową na poziomie podstawowym i 100 zadań, które w latach 2010-2020 wystąpiły na wszystkich 400 zadań prezentowanych w ważne jest dowodzenie niech świadczy zapis z podstawy programowej z roku 2018:„Samodzielne przeprowadzanie dowodów przez uczniów rozwija takie umiejętności jak: logiczne myślenie, precyzyjne wyrażanie myśli i zdolność rozwiązywania złożonych pozwala doskonalić umiejętność dobierania trafnych argumentów i konstruowania poprawnych formułowania poprawnych rozumowań i uzasadnień jest ważna również poza matematyką.”Poniższy zbiór mogą wykorzystać nauczyciele na lekcjach matematyki, a uczniowie do samodzielnej do nauki do matury, jak i przygotowania się do konkursów wdzięczni za wszelkie uwagi dotyczące stopnia trudności, jak i z zakresu prezentowanych zadań i ich dowodów. Szczegóły Tytuł Zadania maturalne na dowodzenie z matematyki Poziom podstawowy i rozszerzony Inne propozycje autorów - Masłowski Tomasz, Toruńska Anna Podobne z kategorii - Matematyka Klienci, którzy kupili oglądany produkt kupili także: Darmowa dostawa od 199 zł Rabaty do 45% non stop Ponad 200 tys. produktów Bezpieczne zakupy Informujemy, iż do celów statystycznych, analitycznych, personalizacji reklam i przedstawianych ofert oraz celów związanych z bezpieczeństwem naszego sklepu, aby zapewnić przyjemne wrażenia podczas przeglądania naszego serwis korzystamy z plików cookies. Korzystanie ze strony bez zmiany ustawień przeglądarki lub zastosowania funkcjonalności rezygnacji opisanych w Polityce Prywatności oznacza, że pliki cookies będą zapisywane na urządzeniu, z którego korzystasz. Więcej informacji znajdziesz tutaj: Polityka prywatności. Rozumiem Lista zadańOdpowiedzi do tej matury możesz sprawdzić również rozwiązując test w dostępnej już aplikacji Matura - testy i zadania, w której jest także, np. odmierzanie czasu, dodawanie do powtórek, zapamiętywanie postępu i wyników czy notatnik :) Dziękujemy developerom z firmy Geeknauts, którzy stworzyli tę aplikację pwz: 36%Poziom wykonania zadania - im wyższy, tym zadanie było łatwiejsze dla 5. (0–2)W trójkącie ABC bok AB jest 3 razy dłuższy od boku AC, a długość boku BC stanowi 4⁄5 długości boku AB . Oblicz cosinus najmniejszego kąta trójkąta ABC. Poniżej wpisz kolejno – od lewej do prawej – pierwszą, drugą oraz trzecią cyfrę po przecinku nieskończonego rozwinięcia dziesiętnego otrzymanego wyniku. pwz: 28%Poziom wykonania zadania - im wyższy, tym zadanie było łatwiejsze dla 6. (0–3)Wyznacz wszystkie wartości parametru a, dla których równanie |x − 5| = (a − 1)2 − 4 ma dwa różne rozwiązania dodatnie. pwz: 19%Poziom wykonania zadania - im wyższy, tym zadanie było łatwiejsze dla 7. (0–3)Dany jest trójkąt równoramienny ABC, w którym |AC| = |BC| = 6, a punkt D jest środkiem podstawy AB. Okrąg o środku D jest styczny do prostej AC w punkcie M. Punkt K leży na boku AC, punkt L leży na boku BC, odcinek KL jest styczny do rozważanego okręgu oraz |KC| = |LC| = 2 (zobacz rysunek). pwz: 25%Poziom wykonania zadania - im wyższy, tym zadanie było łatwiejsze dla 8. (0–3)Liczby dodatnie a i b spełniają równość a2 + 2a = 4b2 + 4b. Wykaż, że a = 2b. pwz: 44%Poziom wykonania zadania - im wyższy, tym zadanie było łatwiejsze dla 9. (0–4)Rozwiąż równanie 3cos2x + 10cos2x = 24sinx − 3 dla x ∈ ⟨0, 2π⟩. pwz: 34%Poziom wykonania zadania - im wyższy, tym zadanie było łatwiejsze dla 10. (0–5)W trzywyrazowym ciągu geometrycznym (a1,a2,a3) spełniona jest równość a1 + a2 + a3 = 21⁄4. Wyrazy a1,a2,a3 są – odpowiednio – czwartym, drugim i pierwszym wyrazem rosnącego ciągu arytmetycznego. Oblicz a1. pwz: 44%Poziom wykonania zadania - im wyższy, tym zadanie było łatwiejsze dla 11. (0–4)Dane jest równanie kwadratowe x2 − (3m + 2)x + 2m2 + 7m − 15 = 0 z niewiadomą x. Wyznacz wszystkie wartości parametru m, dla których różne rozwiązania x1 i x2 tego równania istnieją i spełniają warunek pwz: 33%Poziom wykonania zadania - im wyższy, tym zadanie było łatwiejsze dla 12. (0–5)Prosta o równaniu x + y − 10 = 0 przecina okrąg o równaniu x2 + y2 − 8x − 6y + 8 = 0 w punktach K i L. Punkt S jest środkiem cięciwy KL. Wyznacz równanie obrazu tego okręgu w jednokładności o środku S i skali k = −3. pwz: 20%Poziom wykonania zadania - im wyższy, tym zadanie było łatwiejsze dla 13. (0–4)Oblicz, ile jest wszystkich siedmiocyfrowych liczb naturalnych, w których zapisie dziesiętnym występują dokładnie trzy cyfry 1 i dokładnie dwie cyfry 2. pwz: 22%Poziom wykonania zadania - im wyższy, tym zadanie było łatwiejsze dla 14. (0–6)Podstawą ostrosłupa czworokątnego ABCDS jest trapez ABCD (AB ∥ CD). Ramiona tego trapezu mają długości |AD| = 10 i |BC| = 16 , a miara kąta ABC jest równa 30°. Każda ściana boczna tego ostrosłupa tworzy z płaszczyzną podstawy kąt α, taki, że tg α = 9⁄2. Oblicz objętość tego ostrosłupa. pwz: 31%Poziom wykonania zadania - im wyższy, tym zadanie było łatwiejsze dla 15. (0–7)Należy zaprojektować wymiary prostokątnego ekranu smartfona, tak aby odległości tego ekranu od krótszych brzegów smartfona były równe 0,5 cm każda, a odległości tego ekranu od dłuższych brzegów smartfona były równe 0,3 cm każda (zobacz rysunek – ekran zaznaczono kolorem szarym). Sam ekran ma mieć powierzchnię 60 cm2. Wyznacz takie wymiary ekranu smartfona, przy których powierzchnia ekranu wraz z obramowaniem jest najmniejsza. Sklep Książki Lektury, pomoce szkolne Szkoła średnia Pomoce szkolne Matematyka Teraz matura 2020. Matematyka. Arkusze maturalne. Poziom rozszerzony (okładka miękka, Oferta : 23,17 zł Oferta Bookland : 24,85 zł Oferta Parot : 29,40 zł Oferta Smart Books : 31,45 zł Wszystkie oferty Opis Opis „Teraz matura. Arkusze maturalne” z matematyki na poziomie rozszerzonym pozwalają na oswojenie się z formą egzaminu maturalnego i sprawdzenie stopnia przygotowania do matury na obydwu poziomach. Nowe wydanie zawiera arkusze z matur przeprowadzonych w ostatnich latach. Umożliwiają ćwiczenie umiejętności niezbędnych na egzaminie maturalnym na poziomie podstawowym i rozszerzonym. Ułatwiają samodzielną pracę dzięki odpowiedziom i modelom rozwiązań zadań. Zawierają próbne arkusze przygotowane przez CKE. Pozwalają na przekrojowe sprawdzenie wiedzy przed egzaminem. Odsyłają do dodatkowych arkuszy podstawowych i rozszerzonych za pomocą kodów QR. Zawierają praktyczne informacje o maturze z matematyki. Zostały opracowane przez ekspertów maturalnych zgodnie z wytycznymi CKE dotyczącymi aktualnej formuły egzaminu. Powyższy opis pochodzi od wydawcy. Dane szczegółowe Dane szczegółowe ID produktu: 1234037640 Tytuł: Teraz matura 2020. Matematyka. Arkusze maturalne. Poziom rozszerzony Seria: Teraz matura Autor: Muszyńska Ewa Wydawnictwo: Nowa Era Język wydania: polski Język oryginału: polski Liczba stron: 272 Numer wydania: I Data premiery: 2019-08-30 Forma: książka Wymiary produktu [mm]: 15 x 212 x 300 Indeks: 33606385 Recenzje Recenzje Dostawa i płatność Dostawa i płatność Prezentowane dane dotyczą zamówień dostarczanych i sprzedawanych przez empik. Wszystkie oferty Wszystkie oferty Inne z tej serii Inne z tego wydawnictwa Najczęściej kupowane Arkusze maturalne „NOWA Teraz matura. Matematyka. Poziom rozszerzony” pozwalają na oswojenie się z nową formułą egzaminu maturalnego i sprawdzenie stopnia przygotowania do matury z matematyki jako przedmiotu dodatkowego oraz obowiązkowego. Zgodne z wymaganiami egzaminacyjnymi CKE obowiązującymi na maturze w roku 2023 i 2024. arkusze autorskie na poziomie rozszerzonym i podstawowym opracowane przez ekspertów maturalnych zgodnie z wytycznymi CKE dotyczącymi aktualnej formuły egzaminu odpowiedzi i schematy rozwiązań w publikacji papierowej modele rozwiązań wszystkich zadań pod kodami QR rozwiązania wybranych zadań do pierwszego arkusza w postaci filmów pokazowe arkusze przygotowane przez CKE dodatkowe arkusze podstawowe i rozszerzone(z rozwiązaniami) pod kodami OR praktyczne informacje o maturze z matematyki NOWA Teraz matura. I wiesz jak zdać nową maturę. Liczba zadań: 38. Informator, formuła od 2015. Zadania są z różnych działów. Podane są przykładowe rozwiązania – jedno lub więcej. Uwaga: niektórych zadań nie będzie na maturze 2022 z powodu niezgodności treści z wymaganiami egzaminacyjnymi. Takimi przykładami są zadania: 21, 25, 26, 27, 28, 29, 33, dostępne także w aplikacji Matura - testy i zadania, gdzie mogliśmy wprowadzić dodatkowe funkcje, np: dodawanie do powtórek, zapamiętywanie postępu nauki czy notatnik. Dziękujemy także developerom z firmy Geeknauts, którzy stworzyli tę aplikację

zadania maturalne matematyka poziom rozszerzony